On Poisson operators and Dirichlet-Neumann maps in $H^s$ for divergence form elliptic operators with Lipschitz coefficients

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analyticity of Dirichlet-Neumann Operators on Hölder and Lipschitz Domains

In this paper we take up the question of analyticity properties of Dirichlet–Neumann operators with respect to boundary deformations. In two separate results, we show that if the deformation is sufficiently small and lies either in the class of C1+α (any α > 0) or Lipschitz functions, then the Dirichlet–Neumann operator is analytic with respect to this deformation. The proofs of both results ut...

متن کامل

Spectral Asymptotics for Dirichlet Elliptic Operators with Non-smooth Coefficients

We consider a 2m-th-order elliptic operator of divergence form in a domain  of Rn, assuming that the coefficients are Hölder continuous of exponent r 2 (0, 1]. For the self-adjoint operator associated with the Dirichlet boundary condition we improve the asymptotic formula of the spectral function e( 2m , x , y) for x = y to obtain the remainder estimate O( n + dist(x , ) 1 n 1) with any 2 (0,...

متن کامل

Generalized Q-functions and Dirichlet-to-neumann Maps for Elliptic Differential Operators

The classical concept of Q-functions associated to symmetric and selfadjoint operators due to M.G. Krein and H. Langer is extended in such a way that the Dirichlet-to-Neumann map in the theory of elliptic differential equations can be interpreted as a generalized Q-function. For couplings of uniformly elliptic second order differential expression on bounded and unbounded domains explicit Krein ...

متن کامل

Monotone Numerical Schemes for a Dirichlet Problem for Elliptic Operators in Divergence Form

We consider a second order differential operator A( ) = − ∑d i,j=1 ∂iaij( )∂j + ∑d j=1 ∂j ( bj( )· ) +c( ) on R, on a bounded domain D with Dirichlet boundary conditions on ∂D, under mild assumptions on the coefficients of the diffusion tensor aij . The object is to construct monotone numerical schemes to approximate the solution of the problem A( )u( ) = μ( ), ∈ D, where μ is a positive Radon ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 2015

ISSN: 0002-9947,1088-6850

DOI: 10.1090/tran/6571